

A toolbox for identifying future biosecurity threats under climate change

R Exchange 2023 Epi-interactive

Ursula Torres

Biosecurity NZ – Ministry for Primary Industries

5th May, 2023

Content

01. Background

02. Functionality

Will cover background information on ecological niches and the history of the Climate Matching tool. Will cover the key features and how to effectively use the tool.

03. Case study

Will show how to use the tool with Oriental Fruit Fly as a case study.

Understanding biosecurity risks

- Pathways
 - how the risks can come to NZ
- Species biology
 - Species survival
 - Species reproduction
 - Species establishment

Ecological niche

• Species occurrence is a representation of the ecological niche

Calculations of overlap (similarity)

CMI (Composite Match Index) is one way to represent this overlap

Why?

Likelihood of establishment is an important component of risk analysis for potential pests and diseases.

A key element of this analysis is investigating how much the climates of potential establishment areas overlap with climates in the organism's present range

Species tracking change?

In 2100, to find a temperature seasonal climate similar to Wellington today a species would have to move some 650 km in a straight line to Dunedin or Mosgiel (not considering barriers to migration)

Wellingto

Nueva Zelanda

Christch

Funding and development of the tool

Funding

MPI Operational research fund

Project team

Ministry for Primary Industries Manatū Ahu Matua

- Hossein Narouei-Khandan
- Stephan Halloy
- Ursula Torres
- Davide Santoro
- Kaavya Benjamin
- Michal Kuchar

• Craig Phillips and his team

Uli Muellner and his team

Description of the tool

Data

- Historical climate data 1970-2000 ("1985")
- Future climate scenarios

 2021-2040 ("2030")
 2041-2060 ("2050")
 2061-2080 ("2070")

 under Shared Socioeconomic Pathways (SSP)

 126 ("low emissions"), 245 ("medium emissions") and 585 ("high emissions").

Niche overlap

 Composite match index maximum temperature minimum temperature Precipitation

Climate Matching Tool

This tool compares climates from different locations under current and future climate scenarios

NZ - World similarities

This section allows the user to explore climate similarities between New Zealand and the rest of the world or occurrences

Choose locations - Map

This map allows the user to compare weather stations' climates

Choose locations - Table

This table allows the user to compare multiple weather stations' climates

About

Information on the tool

......, <u>2020</u>

Oriental Fruit Fly (OFF) (*Bactrocera dorsalis*)

Climate Matching Tool

How suitable is the present and future climate of New Zealand for the establishment of OFF?

Source: Wikimedia Commons

Oriental Fruit Fly: NZ climate match can be done with new app.

Oriental Fruit Fly: NZ climate match can be done with new app.

Cambodia

Asia

Region:

Country:

Choose locations - Map

This map allows user to compare a weather station's climate against the rest of weather stations.

Weather stations' climate similarities (CMI)

Oriental Fruit Fly

GBIF DATA

CMI Cells – Climate NOW

Oriental Fruit Fly: Likelihood of establishment in NZ will increase for increasing overall climate suitability, especially with high emissions.

The proportion with CMIs >= 0.7	% CMI Cells (n 343-353)
World 1985, NZ 1985	20.4
World 1985, NZ 2030 Medium emissions	24.5
World 1985, NZ 2050 Low emissions	27
World 1985, NZ 2050 Medium emissions	26.5
World 1985, NZ 2050 High emissions	26.2
World 1985, NZ 2070 Low emissions	24.9
World 1985, NZ 2070 Medium emissions	29.6
World 1985, NZ 2070 High emissions	35.1

Oriental Fruit Fly: Likelihood of establishment in NZ will increase and the South Island will have a suitable climate

2050 - High emissions

2050 - High emissions

Tauranga Aero (NZL)

\$

0.81

Group one

•

Climate Matching Tool

CMT allows us to compare weather stations' climates

Oriental Fruit Fly: Could establish in NZ areas where highest value crops are

Thank you

AgResearch: Craig Phillips and his team

Epi Interactive: Uli Muellner and his team

MPI Operational Research team: Evan Brenton-Rule, Nirosha Priyadarshani, Clare McDonald

Risk team: Helen Harman, Jo Berry, Huimin Lin, Sarah Sapsford Callum McLean, Hayley Tuck, Andreas Makiola

Biosecurity intelligence team: Andrew Rae

EPI-interactive

F

